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This paper explores the benefit of using time dependent basis sets in the description of adiabatic population
transfer between molecular states. Using a time dependent basis set formalism, we develop a counter-diabatic
field paradigm that generates adiabatic population transfer for apparently unfavorable conditions. We also
describe a time dependent perturbation approach to account for the effect of stochastic dephasing on adiabatic
population transfer.

1. Introduction

Optical control of molecular dynamics can be achieved in a
variety of ways,1 some of which3,8,9use very strong fields. When
a material quantum system such as a molecule interacts with a
strong optical field, a description of the molecular dynamics
that uses the basis states of the isolated molecule in field-free
space requires a direct integration of the time dependent
Schrödinger equation. Because the applied field is strong, a
perturbation treatment of the dynamics can require inclusion
of high-order terms and usually is very slowly convergent. One
plausible alternative approach2 to the description of the dynami-
cal evolution of the molecule in the presence of a strong field
is to use, instead of the isolated molecule basis states, time
dependent basis states, for example, the adiabatic states of the
coupled molecule-field system. We call the Hamiltonian that
supports these adiabatic states the transformed Hamiltonian.

When the time evolution of the molecule-field system is
very nearly described by the time evolution of one adiabatic
state, i.e., one eigenstate of the transformed Hamiltonian, it is
reasonable to expect that when there are not too large deviations
of the system time evolution from that described by this
eigenstate, these can be treated as perturbations. Deviations of
the type envisaged can be generated by breakdown of the
conditions required for adiabatic following. This approach to
the analysis of time dependent problems is not new. However,
the point of view we take in this paper is different from that
previously taken. Specifically, in this paper we explore the use
of a transformation of the representation of the Hamiltonian to
a time dependent basis set to design a field that generates
adiabatic population transfer from one state of a molecule to
another when such population transfer is nonadiabatic in the
basis states of the original Hamiltonian.

A transformation of the system Hamiltonian of the type just
suggested generates an effective Hamiltonian with operators of
two types. The first operator type is associated with the adiabatic
following of the field by the molecular motion; it is a diagonal
operator. The second operator type describes the deviations of
the molecular dynamics from adiabatic following of the field;
these are off-diagonal operators. The situation we are interested
in is one in which the adiabatic representation is a very good
zeroth-order description of the transfer of population between
states of a molecule, but there are nonzero off-diagonal terms
corresponding, e.g., to dephasing and/or relaxation that generate
deviations from adiabatic behavior. The structure of the

transformation equations and the effective Hamiltonian suggests
the following question. Suppose we are given a field, the zero-
order field, that is known to generate adiabatic transfer of
population between states of a molecule when the dynamical
perturbations are absent. When dynamical perturbations are
present, the zero-order field no longer generates perfect adiabatic
population transfer. Can we find another field that, when
combined with the zero-order field, will restore the adiabatic
character of the desired population transfer? In section 3 we
answer this question and we give a simple formulation of a
counter-diabatic field paradigm that can generate the field which,
when combined with the zero-order field, generates perfect
adiabatic population transfer. In section 5 we demonstrate how
this analysis can be applied to the description of STIRAP
generated adiabatic population transfer between states of a
molecule when the states of the molecule are subject to
stochastic dephasing.

2. Formalism

Let |ψ(t)〉 be the state vector of a system whose Hamiltonian
is H(t), expressed in terms of basis functions of some static
basis setS, and letU(t) be a time dependent unitary transforma-
tion. The transformed basis setD(t) ) U(t)S is time dependent,
but the unitarity ofU(t) guarantees thatD is an orthonormal
set provided the setS is. The transformed state vector is

To obtain the equation of motion of|ψ̃(t)〉, we begin with the
time dependent Schro¨dinger equation for|ψ(t)〉 and write
|ψ(t)〉 ) U†(t)|ψ̃(t)〉:

Using the product rule for derivatives and the unitarity of the
transformation, and rearranging the terms so that they mimic
the time dependent Schro¨dinger equation, we arrive at2

Equation 3 is the equation of motion for|ψ̃(t)〉 that represents
the evolution in terms of the dynamic basisD; it is isomorphous
with the time dependent Schro¨dinger equation that represents

|ψ̃(t)〉 ) U(t)|ψ(t)〉 (1)

U(t)ip
∂(U†(t)|ψ̃(t)〉)

∂t
) U(t) H(t)(U†(t)|ψ̃(t)〉) (2)

ip
∂|ψ̃(t)〉

∂t
) [U(t) H(t) U†(t) - ipU(t)

∂U†(t)
∂t ]|ψ̃(t)〉 (3)
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the time evolution in the basisS. Because our primary interest
is in adiabatic population transfer, we exploit this formalism
for that problem.

To study adiabatic population transfer in the absence of
dephasing and/or other stochastic perturbations, the pragmatic
choice is thatD and rows ofU(t) consist of the eigenvectors of

whereHS is the isolated system Hamiltonian andHSF is the
system field interaction. The matrixU(t) H(t) U†(t) is diagonal.
If U(t)(∂U†/∂t) is negligible compared to the differences between
the eigenvaluesεi(t) of H(t), the adiabatic approximation is valid.
Put another way, if the molecular state that is prepared has only
one nonzero component in one of the adiabatic states ofU(t)
H(t) U†(t), and if the matrix elements satisfy

then the population transfer is adiabatic. Let the density matrices
in the static and dynamic basis sets be, respectively,σS(t) ≡
|ψ(t)〉〈ψ(t)| andσD(t) ≡ |ψ̃(t)〉〈ψ̃(t)|. Then

The density matrix in the static basis set representation satisfies
the Liouville-von Neumann equation

ExpressingσS(t) in terms ofσD(t) we find

and carrying out the differentiation we arrive at

If one uses the anti-Hermiticity4 of UU̇†, eq 9 can be reduced
to

Note that the Liouville-von Neumann equation derived for
σD(t) is the same as would be obtained by use of the effective
Hamiltonian of eq 3 for|ψ̃(t)〉.

3. Implementing Adiabatic Transfer of Population under
Unfavorable Conditions

In general, adiabatic population transfer between molecular
states is possible when changes in the molecule-field interaction
are slow relative toT ≈ p/∆E, where∆E is the energy separation
of the relevant levels of the field-free system. If a relaxation
process occurs in the molecule on a time scale comparable to
T, the field that is applied to generate the population transfer
must have duration considerably less thanT, with the conse-
quence that to generate complete population transfer, the field

intensity must be very large. For example, the widely used
STIRAP3 population transfer method requires, for all practical
purposes,

if the population transfer is to be adiabatic and complete. Here
τ is the pulse width andΩ is the Rabi frequency. Ifτ is made
small to avert the intervention of a competing relaxation process,
the field intensity needed to drive complete population transfer
may excite competing (e.g., multiphoton) processes in the
molecule. In the case that the field strength needed to drive
adiabatic population transfer also drives unwanted competetive
processes, we seek a second field that, when combined with
the first field, generates the desired adiabatic population transfer.
We call this second field “counter-diabatic”, because it works
to undo the effects of nonadiabaticity on the population transfer.
In other words we seek a second field to maintain perfect
adiabaticity2 of population transfer.

We now illustrate the use of a time dependent basis set to
design a field that generates adiabatic population transfer
between molecular states under unfavorable conditions by
examining a simple two-level system. Two-level systems have
been studied theoretically and experimentally by many inves-
tigators; see for example ref 7 and the references therein.
However, our motivation is to restore the adiabaticity of
population transfer with a simple interference scheme, not
optimize a set for parameters of the pulse(s) that maximize the
transfer efficiency. The formalism set out below is valid for
every system in state space representation. The derivation of
the Hamiltonian associated with the molecule-counter-diabatic
field interaction,HCD(t), is straightforward. In the situation under
consideration, adiabatic population transfer cannot be generated
by HS + HSF(t). The application of the counter-diabatic field
that restores adiabatic population transfer between the states of
HS changes the total HamiltonianH(t) to have the form

We retain the definition ofU(t) as the unitary operator whose
rows consist of the eigenvectors ofHS + HSF(t). Then the
operator [U(t) H(t) U†(t) - ipU(t) ∂U†(t)/∂t] takes the form

We know a priori thatU(t)(HS + HSF(t))U†(t) is diagonal. Then,
if the remaining part of the operator satisfies

at all times, population placed initially in an adiabatic state
remains in that particular state. In that case there will be
adiabatic transfer of population between the states ofHS.
Equation 14 is easily rearranged to read

As a simple example, we now apply this counter-diabatic field
paradigm to a two-level system driven by a chirped field with
uniform profile. The counter-diabatic field for this system,

τΩmax g 10 (11)

H(t) ) HS + HSF(t) + HCD(t) (12)

H(t) ) U(t)(HS + HSF(t))U
†(t) +

U(t) HCD(t) U†(t) - ipU(t)
∂U†(t)

∂t
(13)

U(t) HCD(t) U†(t) - ipU(t)
∂U†(t)

∂t
) 0 (14)

HCD(t) ) ip
∂U†(t)

∂t
U(t) (15)

H(t) ) HS + HSF(t) (4)

p|U(t)
∂U†(t)

∂t |
ij

, |εi(t) - εj(t)| (5)

σS(t) ) |ψ(t)〉〈ψ(t)| ) U†(t)|ψ̃(t)〉〈ψ̃(t)|U(t) )

U†(t) σD(t) U(t) (6)

ip
∂σS(t)

∂t
) [H(t),σS(t)] (7)

ip
∂(U†(t) σS(t) U(t))

∂t
) [H(t),U†(t) σD(t) U(t)] (8)

ip
∂σD

∂t
) (UHU†σD - σDUHU†) - ip(U∂U†

∂t
σD + σD

∂U
∂t

U†)
(9)

ip
∂σD(t)

∂t
) [U(t) H(t) U†(t) - ipU(t)

∂U†(t)
∂t

, σD(t)] (10)
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calculated under the rotating wave approximation (see Appendix
A), is given by

Note that theHCD(t) given above is within the rotating wave
approxiamtion, which only gives us the envelope of the counter-
diabatic field. One has to invert the rotating wave approximation
by using the transformation of Appendix A to obtain the
oscillating part so that

Using equation (85) from Appendix A, we find

Thus, in the case under consideration, the envelope of the
counter-diabatic field is a Lorentzian peaked attR ) (ω - ωL)/
2R with a width of Ω/2R and an absolute maximum of 2R/Ω.
Notice also that

i.e., HCD(t) is a π pulse.
We show in panels a-c of Figure 1 the solutions of the time

dependent Schro¨dinger equation in the basis states ofHS for
various fields. The solutions displayed were obtained without
use of the rotating wave approximation; they are exact. Panels

a and b reveal that neitherHSF(t) nor HCD(t) can generate
adiabatic population transfer in this two-state system transfer.
However, their combination

generates complete adiabatic transfer of population between
states|0〉 and |1〉. Note that the relative phase betweenHCD(t)
andHSF(t) plays an important role in the shaping of the field
that generates the adiabatic population transfer. It has been
known for some time that, in the limit thatR , Ω2, HSF(t)
alone can generate adiabatic transfer of population, but at the
expense of increased pulse duration (inversely proportional to
R). This parameter range is undesirable when there is competi-
tion with population transfer due to relaxation processes. In the
other limit, R . Ω2, HCD(t) can generate adiabatic population
transfer, but at the price of requiring very short pulse duration
and very large field amplitude. In the intermediate parameter
domain, whereR ≈ Ω2, neitherHSF(t) nor HCD(t) can generate
complete adiabatic population transfer, althoughHSF(t) +
HCD(t) does it perfectly.

Calculations similar to that of Figure 1 are performed for a
chirped field with a Gaussian profile and the results are
displayed in Figure 2. Specifically, we used the following
functional form for the time dependent Rabi frequency

where 0< f < 1. Note that the counter-diabatic field suggested
by this procedure is neither too intense nor too short when
compared with the Gaussian pulse. The ideas just described in
this section could be extended to the experimenatlly realized8,9

Figure 1. Use of the counter-diabatic field paradigm in a two-level
system driven by a chirped field. In (a)-(c) the time dependent
Schrödinger equation is integrated without any approximation. (a) shows
the probability of observing the system in the excited state under the
action ofHSF(t), (b) shows the probability of observing the system in
the excited state under the action ofHCD(t), and (c) shows the excited-
state population dynamics of the system under the action ofHSF(t) +
HCD(t). The solid line is the direct integration, and the points are the
adiabatic approximation forHSF(t). The parameters areΩ ) 0.4, R )
0.1, ω ) 1300,ωL ) ω - 2Ω. (d) shows the counter-diabatic field
profile (solid line) and the profile ofHSF (dashed lone).

HCD(t) ) ip
∂U†(t)

∂t
U(t) ) p

Θ̇(t)
2 [0 -i

i 0 ] (16)

HCD(t) ) +pΘ̇(t) sin(ωLt + Rt2)[|0〉〈1| + |1〉〈0|] (17)

Θ̇(t) ) -

Ω
2R

( Ω
2R)2

+ (t +
ωL - ω

2R )2
(18)

∫-∞

∞ |Θ̇(t)| dt ) π (19)

Figure 2. Use of the counter-diabatic field paradigm in a two-level
system driven by a chirped field which has a Gaussian profile. In (a)-
(c) the time dependent Schro¨dinger equation is integrated without any
approximation. The solid lines are the population in the ground state,
and the dashed ones correspond to the population on excited state. (a)
shows the two-level system dynamics under the action ofHSF(t), (b)
shows the two-level system dynamics under the action ofHCD(t), and
(c) shows the excited-state population dynamics of the system under
the action ofHSF(t) + HCD(t). (d) shows the counter-diabatic field profile
(dashed line) and the profile ofHSF (solid line). The parameters are
Ωmax ) 0.4, R ) 0.1, ω ) 1300,ωL ) ω - 2Ω, f ) 0.1.

HSF(t) + HCD(t) ) p(Ω cos(ωLt + Rt2) +

Θ̇(t) sin(wLt + Rt2))[|0〉〈1| + |1〉〈0|] (20)

Ω(t) ) Ωmax exp[-fΩmax
2(t - tR)2] (21)
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vibrational ladder climbing scenario5,6 to restore the adiabaticity
of dynamics as well as to reduce the intensity of the pulses.

The simple analysis just described is valid for everyR so
long as neither the Rabi frequency,Ω, nor the maximum
intensity of the counter-diabatic field, 2R/Ω, is comparable with
the transition frequency. In those cases the rotating wave
approximation is no longer valid. This parameter regime is
mostly not of concern, because we seldom drive systems with
fields that are so intense that the Rabi frequency is comparable
with the transition frequency in optical transitions. An analogous
treatment of population transfer between two states in a three-
state system suggests a generalization of the STIRAP process.
Specifically, it is found that the counter-diabatic field must
couple the initial state and the target state. When all three states
are coupled by radiative transitions, ordinary STIRAP generated
population transfer does not occur because the STIRAP process
requires that there be no direct coupling between the initial state
and the target state.

Another delicate issue that must be addressed is the phase
sensitivity of this population transfer scenario. Note that when
the oscillating part ofHSF(t) is a cosine function,HCD(t) turns
out to be a sine; i.e., there has to be a well-defined phase
between two fields for the scenario to be valid. Because, by
definition, the counter-diabatic field is intended to undo the
nonadiabatic effects at every timet, this should not come as a
surprise. In Figure 3 we demonstrate the phase sensitivity of
the proposed scenario. Depending on the fixed phase between
HS(t) andHCD(t) the yield or the asymptotic value of population
in the excited state ast f ∞ can be varied between 1 and almost
zero.

4. Perturbative Treatment of Nonadiabaticity

A second purpose of this article is to use the time dependent
basis set formalism to describe the inefficiency of population
transfer generated by stochastic dephasing, specifically STIRAP.
Before addressing this issue we seek to establish criteria for
the accuracy range of the perturbation expansion as a function
of pulse parameters. Time dependent perturbation theory,10

which has been studied extensively, is not needed to evaluate
the effect of nonadiabatic coupling on population transfer.
However, for the purposes of this paper we must carry out these
calculations to establish emprical guidelines pertaining to the
accuracy and reliability of a certain order of a perturbation
expansion. These guidelines will be followed in the next section

when we examine the perturbative treatment of stochastic
dephasing in a STIRAP scenario.

We note thatU(t) H(t) U†(t) is diagonal and-ipU(t) U̇†(t)
cannot have diagonal entries4 for a purely real transformation.
Let c̃j(t) be an element of the state vector|ψ̃(t)〉 defined by

Then the equation of motion ofbj(t) is

whereεjk(t) ) εj(t) - εk(t). First we set

whereλ is assumed to be a small parameter, and then expand
bj(t) as follows:

In the zeroth-order approximation, the adiabatic limit, the system
remains in state|i〉t of the basis setD. Then for allt g ti

The first-order term in the perturbation expansion gives

A higher order expression forbj(t) can be obtained from the
following recursion relation:

We will assume that the occurrence of nonzero population in
states other than the initial state and the target state is a signature
of the breakdown in adiabatic population transfer. For the
measure of that breakdown we take

As an example, we examine the breakdown of adiabatic
population transfer in a STIRAP type pulse arrangement. A brief
recap of the three-level STIRAP process is given in Appendix
B. For the sake of simplicity we use Rabi frequencies of the
form

with tp ) 0 and tS ) -τ. The nonadiabaticity of population
transfer associated with the field used is determined by

The natural choice of time unit is the width of a pulse, so we
set 1 TU) τ. The components of the basis vectors ofD are

Figure 3. Phase sensitivity of the counter-diabatic field paradigm. The
asymptotic yield is plotted against the phase angle,δ, betweenHSF(t)
) pΩ cos(ωLt + Rt2) and HCD(t) ) Θ̇(t) sin(ωLt + Rt2 + δ). The
parameters given in Figure 1 are used in the calculations.

c̃j(t) ≡ bj(t) exp[- i
p
∫ti

t
εj(t′) dt′] (22)

ipḃj(t) ) ∑
k

exp[ i

p
∫ti

t
εjk(t′) dt′](-ipU(t) U̇†(t))jkbk(t) (23)

-ipU(t) U̇(t)† ≡ λW(t) (24)

bj(t) ) bj
(0)(t) + λbj

(1)(t) + λ2bj
(2)(t) + ‚‚‚ (25)

bj
(0)(t) ) δij (26)

bj
(1)(t) ) - ∫ti

t
dt′ exp[ i

p
∫ti

t′
εji(t1) dt1](U(t′) U̇†(t′))ji (27)

bj
(r)(t) ) - ∑

k
∫ti

t
dt′ ×

exp[ i

p
∫ti

t′
εjk(t1) dt1](U(t′) U̇†(t′))jkbk

(r-1)(t′) (28)

p(t) ≡ ∑
j*i

|bj(t)|2 (29)

Ωp,S(t) ) Ae-(t-tp,S)2/τ2
(30)

Θ̇(t) )
Ω̇p(t) ΩS(t) - Ωp(t) Ω̇S(t)

Ωp
2(t) + ΩS

2(t)
) -

2tS

τ2

Ωp(t) ΩS(t)

Ωp
2(t) + ΩS

2(t)

(31)
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given by

The signature of nonadiabatic population transfer in a three-
state STIRAP population transfer is nonzero population in state
|2〉, because in the limit where there is adiabatic transfer of
population from state|1〉 to state |3〉, there is never any
population in state|2〉. The correction calculated with first-order
perturbation theory yieldsb+

(1)(t). When this result is trans-
formed to the basis states ofHS, we find

Figure 4 displays the results of the perturbation calculations
and comparisons with exact numerical calculations of the time
dependent population of state|2〉. The agreement is very good
in all cases, and the asymptotic population is very accurately
predicted. In this case it can be shown that the second-order
terms forb(

(2)(t), from eq 28, vanish, so the calculated values of
b(

(1)(t) are accurate to second order. For near-adiabatic popula-
tion transfer a perturbation theory treatment using time depend-
ent basis states is more robust than conventional perturbation
theory. For instance, the first-order perturbation theory analysis
described above accurately predicts the time dependence of the
population of state|2〉, but conventional first-order perturbation
theory fails in every respect. According to conventional time

dependent perturbation theory

i.e., the more intense the pump pulse, the more population stays
in state|2〉, which is in contradiction with reality. Moreover,
first-order conventional perturbation theory is totally blind to
the Stokes field. A third-order perturbation theory calculation
of the breakdown in adiabatic population transfer is based on

The numerically exact representation of the time dependent
population in the basis states ofHS was transformed via

to provide data for comparison. Figure 5 displays the results of
the third-order preturbation calculations forp(t). The parameters
used in the calculations were chosen so that the population
transfer is not adiabatic. The smallest nonadiabatic population
transfer, about 20%, is displayed in the top right panel. As the
nonadiabatic population transfer increases, the first-order per-
turbation theory results deviate significantly from the exact
values. However, the third-order perturbation theory results do
provide accurate predictions.

5. Perturbative Treatment of Stochastic Dephasing

We now consider the influence of stochastic dephasing12-14

on adiabatic population transfer. To account for decoherence
effects, we formulate the theory using a density matrix
representation. We treat pure dephasing via introduction of the

Figure 4. Perturbative treatment of nonadiabaticity in a three-level
STIRAP system. The dashed lines are the predictions of first-order
perturbation theory for the population of state|2〉. The bold dots are
the direct integration of the time dependent Schro¨dinger equation in
basisS with no approximation. The solid lines, mostly indistinguishable
from the dots, are the result of a third-order calculation. The maximum
Rabi frequencies are (top-left)A ) 20 TU-1, (top-right)A ) 10 TU-1,
(bottom-left)A ) 5 TU-1, and (bottom-right)A ) 2.5 TU-1.

b+
(1)(t) ) 1

x2
∫ti

t
dt′ exp[i∫ti

t′
dt1 ε+(t1)]Θ̇(t′) (32)

b-
(1)(t) ) [b+

(1)(t)]* (33)

b0
(1)(t) ) 0 (34)

a2(t) ) 1

x2
(c̃+(t) - c̃-(t)) (35)

Figure 5. Perturbative treatment of nonadiabatic population transfer
in a three-level STIRAP system. The solid lines are the predictions of
third-order perturbation theory forp(t), and the dashed lines are
predicted from a first-order calculation. The bold dots are calculated
values ofp(t) from direct integration of time dependent Schro¨dinger
equation in basisS with no approximation. The maximum Rabi
frequencies are (top-left)A ) 2.0 TU-1, (top-right) A ) 1.5 TU-1,
(bottom-left)A ) 1.0 TU-1, and (bottom-right)A ) 0.05 TU-1.

a2
(1)(t) ) -i∫ti

t
dt′ eiω21t′Ωp(t′) (36)

p(t) ) |c̃-(t)|2 + |c̃+(t)|2 ) |b-(t)|2 + |b+(t)|2 (37)

c̃((t) ) 1

x2
a1(t) sin Θ ( 1

x2
a2(t) + 1

x2
a3(t) cosΘ (38)
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phenomenological operator11

whereδωi(t) is a stochastic process that is ergodic, stationary,
and independent. Then

and

where∆ is the root-mean-square value ofδωi(t) andτc is the
decay time of autocorrelation. The brackets〈‚‚‚〉 define an
ensemble average over the stochastic processδωi(t). The
equation of motion for the density matrix in theS basis is

where

and

Transformation of the matrix elements ofFS to the interaction
representation yields

After introduction of the rotating wave approximation for
resonant fields, the equation of motion in the basis states ofHS

becomes

where HRWA(t) is given in Appendix B. We use the same
transformation as in the previous section. In the time dependent
basis-state representation the equation of motion is

We know thatU(t) HRWA(t) U†(t) has only diagonal entries
whose values are the eigenvalues ofHRWA(t). The dephasing
operator transforms as

where the matrix elements are defined through

The third term in the commutator, which represents the
nonadiabatic population transfer induced by the field, is also
given in Appendix B.

Before we start the perturbation analysis we transform to the
interaction representation via

and for convenience we define

Then the equations of motion for the matrix elements ofFD(t)
are given by

The equations of motion ofF̆0+, F̆0-, andF̆+ - follow from the
Hermiticity condition forFD(t). We expand the density matrix
to read

HD(t) ) p(δω1(t)|1〉〈1| + δω2(t)|2〉〈2| + δω3(t)|3〉〈3|) (39)

〈δωi(t)〉 ) 0 (40)

〈δωi(t) δωj(t′)〉 ) δij∆
2 exp[-|t - t′|/τc] (41)

ip
∂FS(t)

∂t
) [HS + HSF(t) + HD(t), FS(t)] (42)

HS ) ∑
k)1

3

Ek|k〉〈k| (43)

HSF(t) ) 2pΩp(t) cos(ωpt)[|1〉〈2| + |2〉〈1|] +
2pΩS(t) cos(ωSt)[|2〉〈3| + |3〉〈2|] (44)

[FS] ij f [FS] ij exp[-i
Ei - Ej

p
t] (45)

ip
∂FS(t)

∂t
) [HRWA(t) + HD(t), FS(t)] (46)

ip
∂FD(t)

∂t
) [U(t) HRWA(t) U†(t) + U(t) HD(t) U†(t) -

ipU(t)
∂U†(t)

∂t
, FD(t)] (47)

U(t) HD(t) U†(t) ) [η(t) γ(t) â(t)
γ(t) R(t) γ(t)
â(t) γ(t) η(t) ] (48)

R(t) ) δω1(t) cos2 Θ + δω3(t) sin2 Θ (49)

γ(t) ) sin 2Θ

2x2
(δω1(t) - δω3(t)) (50)

â(t) ) 1
2
(δω1(t) sin2 Θ - δω2(t) + δω3(t) cos2 Θ) (51)

η(t) ) 1
2
(δω1(t) sin2 Θ + δω2(t) + δω3(t) cos2 Θ) (52)

[FD(t)] ij f [FD(t)] ij exp[-i∫ti

t
(εi(t1) - εj(t1)) dt1] (53)

I(t1,t2) ≡ exp[-i∫t1

t2
ε+(t) dt] (54)

iF̆++(t) ) â(t)[F-+(t)(I2(ti,t))* - F+-(t) I2(ti,t)] +

γ(t)[F0+(t)(I(ti,t))* - F+0I(ti,t)] +
iΘ̇(t)

x2
[F+0(t)I(ti,t) +

F0+(t)(I(ti,t))*] (55)

iF̆0 0(t) ) γ(t)[(F-0(t) - F0+(t))(I(ti,t))* + (F+0(t) -

F0-(t))I(ti,t)] -
iΘ̇(t)

x2
[(F-0(t) + F0+(t))(I(ti,t))* + (F+0(t) +

F0-(t))I(ti,t)] (56)

iF̆- -(t) ) â(t)[F+-(t)I2(ti,t) - F-+(t)(I2(ti,t))*] +

γ(t)[F0-(t)I(ti,t) - F-0(t)(I(ti,t))*] +
iΘ̇(t)

x2
[F-0(t)(I(ti,t))* +

F0-(t)I(ti,t)] (57)

iF̆+0(t) ) â(t)F-0(t)(I
2(ti,t))* + [η(t) - R(t)]F+0(t) -

1
2
[2γ(t) + ix2Θ̇(t)][F+-(t)I(ti,t) + (F++(t) - F00(t))(I(ti,t))*]

(58)

iF̆-0(t) ) â(t)F+0(t)I
2(ti,t) + [η(t) - R(t)]F-0(t) - 1

2
[2γ(t) +

ix2Θ̇(t)][F-+(t)(I(ti,t))* + (F- -(t) - F00(t))I(ti,t)] (59)

iF̆-+(t) ) â(t)I2(ti,t)[F++(t) - F- -(t)] + γ(t)I(ti,t)[F0+(t) -

F-0(ti,t)] +
iΘ̇(t)I(ti,t)

x2
[F-0(t) + F0+(t)] (60)

Fij(t) ) Fij
(0)(t) + Fij

(1)(t) + Fij
(2)(t) + ‚‚‚ (61)
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and all terms higher than zeroth order are subject to the initial
condition

In zeroth order, when stochastic dephasing is absent, the
population transfer is adiabatic and

To first order

Having obtained the first-order approximations for the coher-
ences, we can now calculate the second-order approximation
for the norms,F++

(2) (t) and F- -
(2) (t). The algebraic expressions

for these quantities are too lengthy to display here, but their
ensemble averages overδωi(t), obtained using〈δωi(t)〉 ) 0, are

whereJa(t) andJb(t) are given by

Becauset′′ e t′, the correlation function inJa(t) can be easily
shown to be

We are now able to calculate the first nonvanishing contribution
to nonadiabatic population transfer:

It is clear that the contribution ofJb(t) to nonadiabatic population
transfer is induced by the field, and we have demonstrated that
it can be accurately predicted for a STIRAP type pulse
arrangement. Moreover, if the population transfer is adiabatic,
i.e., the pulse parameters satisfy eq 11, calculation ofJb(t) is
not of interest. Accordingly, we concentrate attention on the
nonadiabatic population transfer induced by the stochastic

dephasingpd(t) and define

Our experience with the model described in the last section
suggests that the first nonvanishing order in the perturbation
expansion for near-adiabatic or adiabatic population transfer is
accurate until the nonadiabaticity reaches 20%. For larger
nonadiabatic population transfers calculation of the second
nonvanishing order becomes inevitable. Heuristically, we argue
that the legitimicy ofF(t) as a good guide to nonadiabatic
population transfer induced by dephasing becomes questionable
for

OnceF(t) is calculated, one should restrict the value of∆, the
root-mean-square amplitude of the fluctuations, so as to not
violate this condition. For higher values of∆ the next order in
the perturbation expansion must be calculated.

Another important parameter of stochastic dephasing is the
correlation timeτc. We have calculated the indirect asymptotic
nonadiabatic population transfer induced by stochastic dephasing
as a function ofΓ ≡ 1/τc, the average fluctuation frequency.
We used the same Rabi frequencies as used in the preceding
section. Figure 6 displays the asymptotic nonadiabatic population
transfer induced by the field, which we take to be the transfer
inefficiency, plotted against fluctuation frequency on both linear
and logarithmic scales. It is clear that the transfer inefficiency
peaks when the fluctuation frequency is equal to the maximum
Rabi frequency. In our previous work14 we observed and puzzled
with the same behavior in a “numerical experiment”. Our
previous interpretation of this behavior, that a match between
the inverse of the pulse width and the fluctuation frequency is
relevant to nonadiabatic population transfer, was misleading.
Within this formalism it is now clear that a match between the

Fij
(r)(ti) ) 0, r g 1 (62)

F00
(0)(t) ) 1, F++

(0) (t) ) F- -
(0) (t) ) 0 for t g ti (63)

Fij
(0)(t) ) 0, for i * j (64)

F++
(1) (t) ) F- -

(1) (t) ) F00
(1)(t) ) 0 (65)

F+0
(1)(t) ) [F0+

(1)(t)]* ) - i
2∫ti

t
dt′ (I(ti,t′))*[2γ(t′) + ix2Θ̇(t′)]

(66)

F-0
(1)(t) ) [F0-

(1)(t)]* ) - i
2∫ti

t
dt′ I(ti,t′)[2γ(t′) + ix2Θ̇(t′)]

(67)

F+-
(1) (t) ) F-+

(1) (t) ) 0 (68)

〈F++
(2) (t)〉 ) 〈F- -

(2) (t)〉 ) 2R [Ja(t) + Jb(t)] (69)

Ja(t) ) ∫ti

t
dt′∫ti

t′
dt′′ 〈γ(t′) γ(t′′)〉I(ti,t′)(I(ti,t′′))* (70)

Jb(t) ) 1
2∫ti

t
dt′∫ti

t′
dt′′ Θ̇(t′) Θ̇(t′′) I(ti,t′)(I(ti,t′′))* (71)

〈γ(t′) γ(t′′)〉 ) 1
8

sin 2Θ(t′) sin 2Θ(t′′)(〈δω1(t′) δω1(t′′)〉 +

〈δω3(t′) δω3(t′′)〉) (72)

) ∆2

4
sin 2Θ(t′) sin 2Θ(t′′)e-(t′-t′′)/τc (73)

p(t) ) 〈F++
(2) (t)〉 + 〈F- -

(2) (t)〉 ) 4R[Ja(t) + Jb(t)] (74)

Figure 6. Top panel: transfer inefficiency as a function of modulation
frequency (Γ ) 1/τc), on a linear scale. Bottom panel: transfer
inefficiency on a logarithmic scale. The transfer inefficiency, which is
assumed to be the value ofF(tf∞), peaks when the maximum Rabi
frequency is equal to the fluctuation frequency. The pulse width is 1
TU, and the time delay between Stokes and pump pulses is-1 TU.
Both fields are on resonance with the central transition frequencies.

F(t) ≡ pd(t)

∆2
)

R[∫ti

t
dt′∫ti

t′
dt′′ e-(t′-t′′)/τcI(ti,t′)(I(ti,t′′))* ×

sin 2Θ(t′) sin 2Θ(t′′)] (75)

∆2F(tf∞) g 0.2 (76)
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fluctuation frequency and Rabi frequecy is what really counts
for inefficient population transfer to peak.

6. Final Remarks

We have shown that time dependent basis sets can be used
to provide a convenient separation of the adiabatic and nona-
diabatic evolution of population generated by a particular
molecule-field Hamiltonian. This separation helps to describe
stochastic dephasing as a perturbation to the adiabatic population
transfer scenario. It also provides an insight that permits the
design of a field that, in combination with the original field
that cannot drive adiabatic population transfer between the
molecular states, does generate adiabatic population transfer.
This methodology is likely to be useful when it is desirable to
generate adiabatic population transfer with very short pulses.
A critical feature of the use of the combined initial and counter-
diabatic fields is that one must maintain a phase relation between
two fields.

Can the counter-diabatic field paradigm we suggest, or a
similar methedology, be used to generate selective adiabatic
population transfer in a degenerate15,16 four- or five-level
system? The fact that given a population transfer scenario we
can always make it perfectly adiabatic under unfavorable
conditions increases our optimizm for adiabatic control. How-
ever, depending on the topology of problem, the counter-diabatic
field might not be a practical one, as turns out to be the case
for STIRAP.
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Appendix A: A Two-Level System Driven by a Chirped
Field

Consider a two-level system with energy separationpω and
Hamiltonian

Furthermore, assume that the electric dipole interaction is given
by

with V(t) ) Ω(t) cos(ωLt + Rt2), ωL the laser frequency,R the
chirp, andΩ(t) the time independent Rabi frequency. The time
dependent Schro¨dinger equation in the two-level system basis
S ) {|0〉,|1〉} is

where|ψ(t)〉 ) a0(t)|0〉 + a1(t)|1〉 and|ai(t)|2 is the probability
of observing the two-level system in leveli. If one defines the
following transformation

and

and then uses the rotating wave approximation, the Hamiltomian

of the time dependent Schro¨dinger equation becomes

The eigenvalues of the above operator are10

and the corresponding eigenvectors are

where

If the field starts sufficiently off resonance, i.e., the initial
absolute detuning|ωL - ω| is larger than a few times the Rabi
frequency, and if|R| is small so that resonance is achieved
slowly, the transfer from|0〉 to |1〉 is adiabatic. In other words,
the entire time dependence of the system can be followed via
|-〉t. To quantify the description of the rate at which resonance
is achieved, and the magnitude of the initial detuning, we define

For this particular caseU(t) ) U†(t) and

where theε((t) are defined as before. Furthermore the nona-
diabaticity

Appendix B: Three-Level STIRAP System

For this system (p ) 1)

For the sake of simplicity we set the detunings of the pump
and Stokes pulses∆p ) ∆S ) 0. The eigenvalues and
corresponding eigenvectors ofHRWA(t) are given by (see the
paper by Gaubetz et al. in ref 3)

HS ) pω
2 [-1 0

0 1] (77)

HSF(t) ) p[0 V(t)
V(t) 0 ] (78)

i|ψ̇(t)〉 ) H(t)|ψ(t)〉 ) [HS + HSF(t)]|ψ(t)〉 (79)

ã0(t) ) a0(t)e
-i(ωLt+Rt2)/2

ã1(t) ) a1(t)e
i(ωLt+Rt2)/2 (80)

HRWA(t) ) [(ω - ωL)/2 + Rt Ω(t)/2
Ω(t)/2 -(ω - ωL)/2 - Rt ] (81)

ε((t) ) ( 1
2x(ω - ωL - 2Rt)2 + Ω2 (82)

|+〉t ) cos
Θ
2

|0〉 + sin
Θ
2

|1〉 (83)

|-〉t ) - sin
Θ
2

|0〉 + cos
Θ
2

|1〉 (84)

tanΘ )
|Ω(t)|

ωL + 2Rt - ω
with 0 e Θ < π (85)

D ) U(t)S (86)

[|-〉t

|+〉t
] ) [- sin

Θ
2

cos q
Θ
2

cos
Θ
2

sin
Θ
2

][|0〉
|1〉 ] (87)

U(t) HRWA(t) U†(t) ) [ε-(t) 0
0 ε+(t) ] (88)

-iU(t)
∂U†(t)

∂t
) Θ̇

2[0 -i
-i 0 ] (89)

HRWA(t) ) [HS + HSF(t)]RWA ) p[0 Ωp(t) 0
Ωp(t) 0 ΩS(t)
0 ΩS(t) 0 ]

(90)

ε+(t) ) x[Ωp(t)]
2 + [ΩS(t)]

2
ε0(t) ) 0

ε-(t) ) -ε+(t) (91)
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In basisS ) {|1〉,|2〉,|3〉}

where the mixing angleΘ is defined by

The nonadiabaticity is then

|Θ̇(t)| must be much smaller than the energy differences|ε-(t)
- ε0(t)| and |ε+(t) - ε0(t)| for the adiabatic representation to
be valid. This is the same condition given by Gaubetz et al.3
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D(t) ) U(t)S (92)

[|+〉t

|0〉t

|-〉t
] ) 1

x2[sin Θ 1 cosΘ
x2 cosΘ 0 -x2 sinΘ
sin Θ -1 cosΘ ][|1〉

|2〉
|3〉 ] (93)

tanΘ )
Ωp(t)

ΩS(t)
(94)

-iU(t) U̇†(t) )
Θ̇(t)

x2 [0 i 0
-i 0 -i
0 i 0 ] (95)
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