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This paper explores the benefit of using time dependent basis sets in the description of adiabatic population
transfer between molecular states. Using a time dependent basis set formalism, we develop a counter-diabatic
field paradigm that generates adiabatic population transfer for apparently unfavorable conditions. We also
describe a time dependent perturbation approach to account for the effect of stochastic dephasing on adiabatic
population transfer.

1. Introduction transformation equations and the effective Hamiltonian suggests
the following question. Suppose we are given a field, the zero-
order field, that is known to generate adiabatic transfer of
population between states of a molecule when the dynamical

a]oerturbations are absent. When dynamical perturbations are

present, the zero-order field no longer generates perfect adiabatic
population transfer. Can we find another field that, when
combined with the zero-order field, will restore the adiabatic
character of the desired population transfer? In section 3 we
answer this question and we give a simple formulation of a
counter-diabatic field paradigm that can generate the field which,
- ; . when combined with the zero-order field, generates perfect

_cal evolutlc_)n of the molecgle in the presence of a strong f|e_Id adiabatic population transfer. In section 5 we demonstrate how

is to use, mste_ad of the isolated molecule_ba3|§ states, time . analysis can be applied to the description of STIRAP

dependent basis states, for example, the adiabatic states of thﬁenerated adiabatic population transfer between states of a

coupled moleculefield system. We call the Hamiltonian that molecule when the states of the molecule are subject to

supports these adiabatic states the transformed Hamiltonian. stochastic dephasing.
When the time evolution of the molecutéield system is

very nearly described by the time evolution of one adiabatic 2 Formalism

state, i.e., one eigenstate of the transformed Hamiltonian, it is ] )

reasonable to expect that when there are not too large deviations €t [#/(f)Cbe the state vector of a system whose Hamiltonian

of the system time evolution from that described by this IS H(t), €xpressed in terms of basis functions of some static
eigenstate, these can be treated as perturbations. Deviations dfasis Set/; and letU(t) be a time dependent unitary transforma-

the type envisaged can be generated by breakdown of thetion. The tr_ans_formed basis se(t) = U(t);/‘_is time dependent,
conditions required for adiabatic following. This approach to Put the unitarity ofU(t) guarantees that is an orthonormal
the analysis of time dependent problems is not new. However, Set provided the set’is. The transformed state vector is
the point of view we take in this paper is different from that ~

previously taken. Specifically, in this paper we explore the use [y OE= VOO0 @
of a transformation of the representation of the Hamiltonian to ¢ optain the equation of motion ¢f ()] we begin with the

a time dependent basis set to design a field that generatesime dependent Schdinger equation forjy(t)Jand write
adiabatic population transfer from one state of a molecule to |, t)0= U*(t)|p(t)0

another when such population transfer is nonadiabatic in the

basis states of the original Hamiltonian. ) 8(UT(t)|1,Z(t)D]
A transformation of the system Hamiltonian of the type just Uik ot

suggested generates an effective Hamiltonian with operators of

two types. The first operator type is associated with the adiabatic Using the product rule for derivatives and the unitarity of the

following of the field by the molecular motion; it is a diagonal transformation, and rearranging the terms so that they mimic

operator. The second operator type describes the deviations othe time dependent Schtimger equation, we arrive %t

the molecular dynamics from adiabatic following of the field;

these are off-diagonal operators. The situation we are interested _ 3|(t)0 T . | -

in is one in which the adiabatic representation is a very good ify at U(®) HO U — ihU(D) at lp®OU (3)

zeroth-order description of the transfer of population between

states of a molecule, but there are nonzero off-diagonal termsEquation 3 is the equation of motion fap(t)Cthat represents

corresponding, e.g., to dephasing and/or relaxation that generateéhe evolution in terms of the dynamic basis it is isomorphous

deviations from adiabatic behavior. The structure of the with the time dependent Schdimger equation that represents
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Optical control of molecular dynamics can be achieved in a
variety of ways, some of whicR®°use very strong fields. When
a material quantum system such as a molecule interacts with
strong optical field, a description of the molecular dynamics
that uses the basis states of the isolated molecule in field-free
space requires a direct integration of the time dependent
Schralinger equation. Because the applied field is strong, a
perturbation treatment of the dynamics can require inclusion
of high-order terms and usually is very slowly convergent. One
plausible alternative approgcto the description of the dynami-
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the time evolution in the basig Because our primary interest
is in adiabatic population transfer, we exploit this formalism
for that problem.

To study adiabatic population transfer in the absence of

dephasing and/or other stochastic perturbations, the pragmatic

choice is that¥ and rows ofU(t) consist of the eigenvectors of
“4)

whereHs is the isolated system Hamiltonian ahtdr is the
system field interaction. The matriX(t) H(t) UT(t) is diagonal.

If U(t)(dU™/at) is negligible compared to the differences between
the eigenvalues(t) of H(t), the adiabatic approximation is valid.

H(t) = Hg + Hgglt)
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intensity must be very large. For example, the widely used
STIRAP population transfer method requires, for all practical
purposes,

tQ .. > 10

max = (11)

if the population transfer is to be adiabatic and complete. Here
7 is the pulse width an@ is the Rabi frequency. If is made

small to avert the intervention of a competing relaxation process,
the field intensity needed to drive complete population transfer
may excite competing (e.g., multiphoton) processes in the
molecule. In the case that the field strength needed to drive
adiabatic population transfer also drives unwanted competetive

Put another way, if the molecular state that is prepared has onlyprocesses, we seek a second field that, when combined with

one nonzero component in one of the adiabatic staté$(9f
H(t) UT(t), and if the matrix elements satisfy

u'

h‘U(t) - l&i(t) — (D)l ®)

the first field, generates the desired adiabatic population transfer.
We call this second field “counter-diabatic”, because it works
to undo the effects of nonadiabaticity on the population transfer.
In other words we seek a second field to maintain perfect
adiabaticity of population transfer.

We now illustrate the use of a time dependent basis set to

then the population transfer is adiabatic. Let the density matricesdesign a field that generates adiabatic population transfer

in the static and dynamic basis sets be, respectivef) =

lw(®)Mp(t)] andop(t) = [ (H)]. Then
os(t) = [p @O TP = U'@Q) 1@ mp©)1UE) =
U'() op(H) U() (6)

The density matrix in the static basis set representation satisfies
the Liouville—von Neumann equation

t
A28 — (.40 7)
Expressingos(t) in terms ofop(t) we find
T
iha(u o0 B0 [H®.U'® op U®]  (8)

ot

and carrying out the differentiation we arrive at

8 T
ih=2 = (UHU'o, — 0pUHU') - m(uaU N o+ DaaLtJu )
(9)

If one uses the anti-Hermiticityof UUT, eq 9 can be reduced
to

dop(t)

_ au' ()
iA ot

m,%m] (10)

U(t) H(t) U'(t) -

Note that the Liouville-von Neumann equation derived for

op(t) is the same as would be obtained by use of the effective

Hamiltonian of eq 3 fory(t)C]

3. Implementing Adiabatic Transfer of Population under
Unfavorable Conditions

between molecular states under unfavorable conditions by
examining a simple two-level system. Two-level systems have
been studied theoretically and experimentally by many inves-
tigators; see for example ref 7 and the references therein.
However, our motivation is to restore the adiabaticity of
population transfer with a simple interference scheme, not
optimize a set for parameters of the pulse(s) that maximize the
transfer efficiency. The formalism set out below is valid for
every system in state space representation. The derivation of
the Hamiltonian associated with the molectt®unter-diabatic
field interaction Hep(t), is straightforward. In the situation under
consideration, adiabatic population transfer cannot be generated
by Hs + Hsgt). The application of the counter-diabatic field
that restores adiabatic population transfer between the states of
Hs changes the total Hamiltoniar(t) to have the form
H(t) = Hs + Hgg(t) + Hep(D) 12)
We retain the definition otJ(t) as the unitary operator whose
rows consist of the eigenvectors bfs + Hsgt). Then the
operator [J(t) H(t) UT(t) — ihU(t) aUT(t)/ot] takes the form

H(®) = U(t)(Hs + HsD)U' () +

LUt
U(t) Heo(®) UT(D) — iU(t) m() (13)
We know a priori thatJ(t)(Hs + Hsg(t))UT(t) is diagonal. Then,
if the remaining part of the operator satisfies

au*(t)

U(t) Hep() UT() — iRU(1) =0 (14)

at all times, population placed initially in an adiabatic state
remains in that particular state. In that case there will be
adiabatic transfer of population between the statesHegf

In general, adiabatic population transfer between molecular Equation 14 is easily rearranged to read

states is possible when changes in the moleciigdd interaction
are slow relative td ~ h/AE, whereAE is the energy separation
of the relevant levels of the field-free system. If a relaxation

au*(t)

Hep(t) = u(n (15)

process occurs in the molecule on a time scale comparable to

T, the field that is applied to generate the population transfer
must have duration considerably less thgrwith the conse-

As a simple example, we now apply this counter-diabatic field
paradigm to a two-level system driven by a chirped field with

guence that to generate complete population transfer, the fielduniform profile. The counter-diabatic field for this system,
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Figure 2. Use of the counter-diabatic field paradigm in a two-level
Figure 1. Use of the counter-diabatic field paradigm in a two-level system driven by a chirped field which has a Gaussian profile. i (a)
system driven by a chirped field. In ajc) the time dependent (c) the time dependent Schioger equation is integrated without any
Schrainger equation is integrated without any approximation. (a) shows approximation. The solid lines are the population in the ground state,
the probability of observing the system in the excited state under the and the dashed ones correspond to the population on excited state. (a)
action ofHsgt), (b) shows the probability of observing the system in  shows the two-level system dynamics under the actiokl$ft), (b)

the excited state under the actionHdp(t), and (c) shows the excited-  shows the two-level system dynamics under the actiod®{t), and

state population dynamics of the system under the actidfisgf) + (c) shows the excited-state population dynamics of the system under
Hco(t). The solid line is the direct integration, and the points are the the action oHsgt) + Hcp(t). (d) shows the counter-diabatic field profile
adiabatic approximation fddsgt). The parameters a® = 0.4,a = (dashed line) and the profile ¢ise (solid line). The parameters are

0.1, w = 1300,w. = w — 2Q. (d) shows the counter-diabatic field Qmax= 0.4, =0.1,w = 1300,w. = w — 2Q,f=10.1.
profile (solid line) and the profile oHsr (dashed lone).

a and b reveal that neithdtlsgt) nor Hcp(t) can generate
calculated under the rotating wave approximation (see Appendix adiabatic population transfer in this two-state system transfer.
A), is given by However, their combination

Hoy(t) = iha‘U*(t)U(t) _ h% i0 —i] (16)  HsrD) + Hep(®) = h(Q cos@uyt + at’) +

o 0 O(t) sintw, t + at?))[OML| + |1T0]] (20)
Note that theHcp(t) given above is within the rotating wave
approxiamtion, which only gives us the envelope of the counter- generates complete adiabatic transfer of population between
diabatic field. One has to invert the rotating wave approximation states|0CJand|1L] Note that the relative phase betwedap(t)
by using the transformation of Appendix A to obtain the andHggt) plays an important role in the shaping of the field
oscillating part so that that generates the adiabatic population transfer. It has been
. ) ) known for some time that, in the limit that < Q2, Hsgt)
Hep(t) = +RO(1) sin(w, t + at?)[|OML| + |100] (17) alone can generate adiabatic transfer of population, but at the
expense of increased pulse duration (inversely proportional to
Using equation (85) from Appendix A, we find o). This parameter range is undesirable when there is competi-
tion with population transfer due to relaxation processes. In the

1] other limit, a. > Q2 Hcp(t) can generate adiabatic population
o) =— 20 (18) transfer, but at the price of requiring very short pulse duration
Q 2+ t+ o — w)? and very large field amplitude. In the intermediate parameter
20, 200 domain, wherex ~ Q2?, neitherHsgt) nor Hep(t) can generate

complete adiabatic population transfer, althougb«t) +
Thus, in the case under consideration, the envelope of theHqp(t) does it perfectly.

counter-diabatic field is a Lorentzian peakedrat= (w — w)/ Calculations similar to that of Figure 1 are performed for a
20 with a width of /20 and an absolute maximum obuX2. chirped field with a Gaussian profile and the results are
Notice also that displayed in Figure 2. Specifically, we used the following

" functional form for the time dependent Rabi frequency
Jolemd=x (19)
Qt) = Qe ©XPE TR (t = tR)7] (21)
i.e., Hep(t) is ar pulse.

We show in panels-ac of Figure 1 the solutions of the time  where 0< f < 1. Note that the counter-diabatic field suggested
dependent Schdinger equation in the basis statesHf for by this procedure is neither too intense nor too short when
various fields. The solutions displayed were obtained without compared with the Gaussian pulse. The ideas just described in
use of the rotating wave approximation; they are exact. Panelsthis section could be extended to the experimenatlly redlized
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L NS~ s o o when we examine the perturbative treatment of stochastic
09t ] dephasing in a STIRAP scenario. .
We note thatU(t) H(t) U'(t) is diagonal and-iAU(t) U(t)
08t : '
cannot have diagonal entrfe®r a purely real transformation.
07 1 Let ¢j(t) be an element of the state vectgr(t)Cdefined by
06} .
2 &0 = b exd— 5 [¢(t) dt (22)
3 05y (A R
04|
0sl Then the equation of motion di(t) is
02} . R P .
ol ihb(t) = Z ex;{;l ; €(t) dt ](—th(t) UT(t))jkbk(t) (23)
0 02 04 06 08 1 12 14 16 18 2 whereej(t) = €(t) — e(t). First we set
phase angle (inm) .
Figure 3. Phase sensitivity of the counter-diabatic field paradigm. The —iRU() U()" = AW (24)
asymptotic yield is plotted against the phase angjdetweerHsHt) .
= AQ cos@t + ot?) and Heo(t) = O(t) sin(.t + at2 + d). The where/ is assumed to be a small parameter, and then expand
parameters given in Figure 1 are used in the calculations. b(t) as follows:
vibrational ladder climbing scenafibto restore the adiabaticity by(t) = bO(t) + Ab() + A%(t) + - (25)
of dynamics as well as to reduce the intensity of the pulses. o S
The simple analysis just described is valid for everso In the zeroth-order approximation, the adiabatic limit, the system

intensity of the counter-diabatic fieldpX2, is comparable with ©

the transition frequency. In those cases the rotating wave bj = 6ij (26)

approximation is no longer valid. This parameter regime is i ) ) ) )

mostly not of concern, because we seldom drive systems with 1€ first-order term in the perturbation expansion gives

fields that are so intense that the Rabi frequency is comparable ; it .

with the transition frequency in optical transitions. An analogous bl-(l)(t) = — ft dt’ exp{g jt' eji(tl) at, |(U(t') UT(t'))ji (27)

treatment of population transfer between two states in a three- ' '

state system suggests a generalization of the STIRAP processa higher order expression fds(t) can be obtained from the

Specifically, it is found that the counter-diabatic field must following recursion relation:

couple the initial state and the target state. When all three states

are coupled by radiative transitions, ordinary STIRAP generated b-(”(t) - _ ftdt' «

population transfer does not occur because the STIRAP process’ Z b

requires that there be no direct coupling between the initial state i )

and the target state. exp[— S ety dtl](U(t’) UT()),bd ) (28)
Another delicate issue that must be addressed is the phase A

sensitivity of this population transfer scenario. Note that when

the oscillating part oHsgt) is a cosine functionHep(t) turns

out to be a sine; i.e., there has to be a well-defined phase

between two fields for the scenario to be valid. Because, by

definition, the counter-diabatic field is intended to undo the

nonadiabatic effects at every tinhethis should not come as a _ 2

surprise. In Figure 3 we demonstrate the phase sensitivity of A0 = z|bj(t)| (29)

the proposed scenario. Depending on the fixed phase between

Hs(t) andHcp(t) the yield or the asymptotic value of population As an example, we examine the breakdown of adiabatic

in the excited state ds— o can be varied between 1 and almost population transfer in a STIRAP type pulse arrangement. A brief

We will assume that the occurrence of nonzero population in
states other than the initial state and the target state is a signature
of the breakdown in adiabatic population transfer. For the
measure of that breakdown we take

1=

zero. recap of the three-level STIRAP process is given in Appendix
B. For the sake of simplicity we use Rabi frequencies of the
4. Perturbative Treatment of Nonadiabaticity form

A second purpose of this article is to use the time dependent
basis set formalism to describe the inefficiency of population
transfer generated by stochastic dephasing, specifically STIRAP.
Before addressing this issue we seek to establish criteria for
the accuracy range of the perturbation expansion as a function

Q, (1) = Ae (T (30)

with t, = 0 andts = —7. The nonadiabaticity of population
transfer associated with the field used is determined by

of pulse parameters. Time dependent perturbation th€ory, Q (1) Qt) — Q. (1) Q1) 2ty Q) Q1)
which has been studied extensively, is not needed to evaluate ©(t) = ——— > =
the effect of nonadiabatic coupling on population transfer. Q(t) + Qg7(1) 70 Q) + Qg(Y)
However, for the purposes of this paper we must carry out these (31)

calculations to establish emprical guidelines pertaining to the
accuracy and reliability of a certain order of a perturbation The natural choice of time unit is the width of a pulse, so we
expansion. These guidelines will be followed in the next section set 1 TU= 7. The components of the basis vectorscofare
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. . . L Figure 5. Perturbative treatment of nonadiabatic population transfer
Figure 4. Perturbative treatment of nonadiabaticity in a three-level i, three-level STIRAP system. The solid lines are the predictions of
STIRAP system. The dashed I|ne_s are the predictions of first-order thirq-order perturbation theory fou(t), and the dashed lines are
perturbation theory for the population of stag) The bold dots are  yreqicted from a first-order calculation. The bold dots are calculated
the direct integration of the time dependent Sclimger equation in values of(t) from direct integration of time dependent Sotfirmger
basis S'with no approximation. The solid lines, mostly indistinguishable equation in basis/' with no approximation. The maximum Rabi
from the dots, are the result of a third-order calculation. The maximum frequencies are (top-lefdh = 2.0 TU%, (top-right) A = 1.5 TU!

Rabi frequencies are (top-le#)= 20 TU*_l, (top-right) A= 10 TU ™%, (bottom-left) A = 1.0 TU™, and (bottom-righty = 0.05 TU™™.
(bottom-left)A = 5 TU™1, and (bottom-rightA = 2.5 TU ™%

given by dependent perturbation theory

bi(e) = %zft:dt' expli ft:'dt1 e (IB)  (32) ag(t) = —i [ dt €2 Qu(t) (36)

i.e., the more intense the pump pulse, the more population stays
b®(t) = [bD(t)]* (33) in state|20] which is in contradiction with reality. Moreover,
first-order conventional perturbation theory is totally blind to
b(l)(t) =0 (34) the Stokes field. A third-order perturbation theory calculation
0 of the breakdown in adiabatic population transfer is based on

The signature of nonadiabatic population transfer in a three- - -

state SqI'IRAP population transfeFr) ilsononzero population in state 20 =B O + 8.0 = b_OF + Ib,®) (37)
|2[] because in the limit where there is adiabatic transfer of
population from statel10to state |3[] there is never any
population in staté2[] The correction calculated with first-order

perturbation theory yieldd(t). When this result is trans-

The numerically exact representation of the time dependent
population in the basis states ldg was transformed via

. , ~ 1 . 1 1
formed to the basis states Hf, we find E.() =——a,(t) sin® + —a,(t) + ——a,(t) cos®  (38)
. V2 NN
() = \/E(C+(t) - () (35) to provide data for comparison. Figure 5 displays the results of

the third-order preturbation calculations fit). The parameters
Figure 4 displays the results of the perturbation calculations used in the calculations were chosen so that the population
and comparisons with exact numerical calculations of the time transfer is not adiabatic. The smallest nonadiabatic population
dependent population of stael] The agreement is very good  transfer, about 20%, is displayed in the top right panel. As the
in all cases, and the asymptotic population is very accurately nonadiabatic population transfer increases, the first-order per-
predicted. In this case it can be shown that the second-orderturbation theory results deviate significantly from the exact
terms forbgf)(t), from eq 28, vanish, so the calculated values of Values. However, the third-order perturbation theory results do

bi®(t) are accurate to second order. For near-adiabatic popula-Provide accurate predictions.

tion transfer a perturbation theory treatment using time depend- . . .
ent basis stateps is more robust than conventional perturgations' Perturbative Treatment of Stochastic Dephasing

theory. For instance, the first-order perturbation theory analysis We now consider the influence of stochastic dephdsifig
described above accurately predicts the time dependence of then adiabatic population transfer. To account for decoherence
population of stat¢2l] but conventional first-order perturbation effects, we formulate the theory using a density matrix
theory fails in every respect. According to conventional time representation. We treat pure dephasing via introduction of the
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phenomenological operatér

Hy(t) = A(0w, (D11 + dar,(t)| 22| + dw5(H)]3MB))  (39)

wheredwi(t) is a stochastic process that is ergodic, stationary,

and independent. Then
Dw,(t)C=0 (40)
and
Dw;(t) do;(t) 0= 6, A expl-|t — t'|/z] (41)
whereA is the root-mean-square value @bi(t) andz. is the
decay time of autocorrelation. The brackéts[Odefine an

ensemble average over the stochastic procisgt). The
equation of motion for the density matrix in thébasis is

dpgt
ih%() = [Hs+ Hselt) + Hp(t), ps®]  (42)

where

3
Ho= S E, KK (43)
s k; ’

and

Hse(t) = 2AQ (1) cos, t)[|102| + [2[1[] +
2hQ(t) cosgl)[|2013] + |32[] (44)

Transformation of the matrix elements @f to the interaction
representation yields

E —F
[osli — [pedlj eXF{_' A t] (45)

After introduction of the rotating wave approximation for

resonant fields, the equation of motion in the basis statéksof
becomes

dpg(t
ify p;{() = [Hrwa(t) + Hp(1), ps()] (46)

where Hrwa(t) is given in Appendix B. We use the same
transformation as in the previous section. In the time dependent2

basis-state representation the equation of motion is

122 — U0 Higun® U0 + UG Hot9 U0 -

at
T
U0 . oot (@)

We know thatU(t) Hrwa(t) UT(t) has only diagonal entries
whose values are the eigenvaluesHywa(t). The dephasing
operator transforms as

n@® y@® A
U Ho® U’ = [7() o) »O (48)
pO y@® 7

Demirplak and Rice
where the matrix elements are defined through
a(t) = dw,(t) cos O + dwa(t) sin’ © (49)

sin 20
2V2

y(®) = (O, (t) — dw(t)) (50)

Blt) = %(6601(0 sSi” © — dw,(t) + dw4(t) cos ©)  (51)

n(t) = %(5601(0 SI? © + dw(t) + dwq(t) 0 ©)  (52)

The third term in the commutator, which represents the
nonadiabatic population transfer induced by the field, is also
given in Appendix B.

Before we start the perturbation analysis we transform to the
interaction representation via

Loo(]; — [po(®)]; expl-i [ (6(t) — g(t) dt] (53)
and for convenience we define
I(tyt,) = expl—i ftizq(t) dt] (54)

Then the equations of motion for the matrix elementgsit)
are given by

i.4:(0) = BOI— OGN = o) 17(0] +
Y Oloo QUG — pool(t)] + %{pm(t)l(ti,t) +

Po-(O((t.0)4] (55)
1£06(0) = 7O(p—o(®) ~ PoOIIE)* + (P4o®)
Po-(O)I(,0)] — %[(Po(t) + o O E0)* + (o) +
Po-(O)I(t.0] (56)
ip- () = AOLe.-OI(GH — p- O0°1.0) +
YOloo- 16, — PN + %{po(t)(l(ti,t))* +
po-MIC0] (57)
10.40(8) = BOP-oO°E.0)* + [1(0) — a®]p-o0) —
3200 + V2O o, D16 + (0.0 ~ poo®IC.H)]
(58)
1-o0) = BP0 + 1) — allp- o) ~ 270 +
IV200)o— (O E.H)* + (- (1) = pos®)I D] (59)
i) = BOIEOL0.4- 1) = p- (O] + 7O t.OLe04 (1) —

iO)I(t,1)
P—o(ti,] + T[P—o(t) + po+(1)] (60)

The equations of motion gfo+, po—, andp+ — follow from the
Hermiticity condition forpp(t). We expand the density matrix
to read

pi® = 7O + o) + p{A() + - (61)
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and all terms higher than zeroth order are subject to the initial
condition

pt)=0, r=1 (62)
In zeroth order, when stochastic dephasing is absent, the
population transfer is adiabatic and

PR =1, p2M=p"M=0 for tz=t (63)
o)y =0,  fori =] (64)

To first order
P20 = pY_(t) = pl(t) = 0 (65)

1
P

® = [p§2OF = - '5 Jidt (GO Ry(E) +iv20(1)]
(66)

1

o0 = [(01 = — 1 [l 16,0)[20(0) + V20 ()]

(67)
P = p2h (=0

Having obtained the first-order approximations for the coher-

(68)

ences, we can now calculate the second-order approximation

for the norms,p@.(t) and p®_(t). The algebraic expressions
for these quantities are too lengthy to display here, but their
ensemble averages oupi(t), obtained usingdw;i(t)C= 0, are

P.00=BEO0=2213,0 + 301 (69)

whereJy(t) and Jy(t) are given by
30 = fide [ () y()IE DA (70)
30 = % [t [Td OF) OX) LG (71)

Becausd' < t', the correlation function ild,(t) can be easily
shown to be

() y(t")= % sin 20(t") sin 20(t")(Dw,(t') S, (t")H
Day(t) dwst")] (72)
— A_Z sin B(tl) sin 2®(tn)e—('['—t”)/1'C

7 (73)

We are now able to calculate the first nonvanishing contribution
to nonadiabatic population transfer:

4) = OO0 P (1)0= 473,1) + 3,0 (74)

It is clear that the contribution gf(t) to nonadiabatic population
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Figure 6. Top panel: transfer inefficiency as a function of modulation
frequency [ = 1), on a linear scale. Bottom panel: transfer
inefficiency on a logarithmic scale. The transfer inefficiency, which is
assumed to be the value Bft—»), peaks when the maximum Rabi
frequency is equal to the fluctuation frequency. The pulse width is 1
TU, and the time delay between Stokes and pump pulse<ligU.
Both fields are on resonance with the central transition frequencies.

dephasingsy(t) and define

ZORE
A
A S [ ar eI () x
sin 20(t') sin 20(t")] (75)

Ft) =

Our experience with the model described in the last section
suggests that the first nonvanishing order in the perturbation
expansion for near-adiabatic or adiabatic population transfer is
accurate until the nonadiabaticity reaches 20%. For larger
nonadiabatic population transfers calculation of the second
nonvanishing order becomes inevitable. Heuristically, we argue
that the legitimicy ofF(t) as a good guide to nonadiabatic
population transfer induced by dephasing becomes questionable
for

APF(t—w) = 0.2 (76)
OnceF(t) is calculated, one should restrict the valueAgfthe
root-mean-square amplitude of the fluctuations, so as to not
violate this condition. For higher values Afthe next order in
the perturbation expansion must be calculated.

Another important parameter of stochastic dephasing is the
correlation timer.. We have calculated the indirect asymptotic
nonadiabatic population transfer induced by stochastic dephasing
as a function ofl' = 1/, the average fluctuation frequency.
We used the same Rabi frequencies as used in the preceding
section. Figure 6 displays the asymptotic nonadiabatic population
transfer induced by the field, which we take to be the transfer
inefficiency, plotted against fluctuation frequency on both linear
and logarithmic scales. It is clear that the transfer inefficiency
peaks when the fluctuation frequency is equal to the maximum

transfer is induced by the field, and we have demonstrated thatRabi frequency. In our previous wdflve observed and puzzled

it can be accurately predicted for a STIRAP type pulse with the same behavior in a “numerical experiment”. Our
arrangement. Moreover, if the population transfer is adiabatic, previous interpretation of this behavior, that a match between
i.e., the pulse parameters satisfy eq 11, calculatiod,@f is the inverse of the pulse width and the fluctuation frequency is
not of interest. Accordingly, we concentrate attention on the relevant to nonadiabatic population transfer, was misleading.
nonadiabatic population transfer induced by the stochastic Within this formalism it is now clear that a match between the
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fluctuation frequency and Rabi frequecy is what really counts of the time dependent Schdimger equation becomes
for inefficient population transfer to peak.
(0 —w)2+ ot Q(t)/2

6. Final Remarks Hrwa(t) = Q)2 —( — w2 — at (81)

We have shown that time dependent basis sets can be used )
to provide a convenient separation of the adiabatic and nona- 1he eigenvalues of the above operator'@re
diabatic evolution of population generated by a particular 1
molecule-field Hamiltonian. This separation helps to describe e()==£ 5\/((” — o, — 2at)* + Q? (82)
stochastic dephasing as a perturbation to the adiabatic population
transfer scenario. It also provides an insight that permits the
design of a field that, in combination with the original field
that cannot drive adiabatic population transfer between the ® . O
molecular states, does generate adiabatic population transfer. |+ [= cosZ|00H sin7 |10 (83)
This methodology is likely to be useful when it is desirable to
generate adiabatic population transfer with very short pulses.
A critical feature of the use of the combined initial and counter-
diabatic fields is that one must maintain a phase relation between
two fields. where
Can the counter-diabatic field paradigm we suggest, or a
similar methedology, be used to generate selective adiabatic tan® = |Q(t)]
population transfer in a degener&t& four- or five-level o t2at—w
system? The fact that given a population transfer scenario we
can always make it perfectly adiabatic under unfavorable If the field starts sufficiently off resonance, i.e., the initial
conditions increases our optimizm for adiabatic control. How- absolute detuningw,. — w| is larger than a few times the Rabi
ever, depending on the topology of problem, the counter-diabatic frequency, and ifia| is small so that resonance is achieved
field might not be a practical one, as turns out to be the case slowly, the transfer fronjOCto |1(is adiabatic. In other words,
for STIRAP. the entire time dependence of the system can be followed via
|—[d To quantify the description of the rate at which resonance
Acknowledgment. This research was supported by a grant is achieved, and the magnitude of the initial detuning, we define
from the National Science Foundation.

and the corresponding eigenvectors are
|—Ll=— sin%OD—l— cos%lD (84)

with 0=© <z (85)

Y =U(t).S (86)
Appendix A: A Two-Level System Driven by a Chirped
(i 2 0
Co_nsid_er a two-level system with energy separatienand ’l"’@ = e ) ['13 (87)
Hamiltonian COSE SIHE
_hw|-10 For this particular casel(t) = U'(t) and
Us=72 [o 1] 77
L . L t _ |€-() O
Furthermore, assume that the electric dipole interaction is given U(t) Hrwa(®) U'(t) = 0 e (88)
by
0 V() where thee,(t) are defined as before. Furthermore the nona-
— diabaticity
He(1) h[V(t) 0 (78)
Ut ¢ —i
with V(t) = Q(t) cos.t + at?), w the laser frequencyy the -iu(t) at( ) = %[EI 0 I] (89)
chirp, andQ(t) the time independent Rabi frequency. The time
(jjgi)te{r;ggrlt[ﬂs%hdnnger equation in the two-level system basis Appendix B: Three-Level STIRAP System
" For this systemHA = 1)
i1 (O0= HOIp(O U= [Hs + HsOTlp ()0 (79)
s s 0 Q0 0
where |y (t)O= ap(t)|0CH ay(t)|10and|a(t)|? is the probability Hrwa() = [Hs + Hs{O]rwa = A (0 0 Qq(t)
of observing the two-level system in leviellf one defines the 0 Q4 0
following transformation (90)
ay(t) = ao(t)e—i(th+at2)/2 For the sake of simplicity we set the detunings of the pump
and Stokes pulse®\, = As = 0. The eigenvalues and
and corresponding eigenvectors blrwa(t) are given by (see the

paper by Gaubetz et al. in ref 3)

~ _ i(o t+ot?)/2
(0 = a,(e ®) = JIQOP QM e=0

and then uses the rotating wave approximation, the Hamiltomian e ()= —e(t) (91)
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In basis. /= {|1[]20) 30}

a(t) = U@).s (92)
[+0 L sin® 1 cos® |1
00} | = 5 V2cos® 0 —v2sine||l20] (93)
=L 2sine —1 cos® 13
where the mixing angl® is defined by
Q1)
tan® =—" (94)
Q1)
The nonadiabaticity is then
|0 i 0
. O(t
—iu(t) UT(t)=ﬁ —i 0 —i (95)
v2lo i 0

|©(t)| must be much smaller than the energy differenee)
— eo(t)] andles(t) — eo(t)| for the adiabatic representation to
be valid. This is the same condition given by Gaubetz ét al.
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